Duration: ​1 ​and ​½ ​hours

Introduction: It ​has ​become ​remarkably ​simple ​to ​create ​a ​valid-looking ​website, ​which ​to ​the unassuming ​eye ​resembles ​an ​official, ​big-name ​news ​outlet. ​But ​as ​if ​verifying text content ​wasn’t ​hard ​enough, ​seductive ​visualisations; ​graphs, ​charts, ​and ​maps, ​made with ​free ​tools ​found ​anywhere ​on ​the ​internet, ​can ​make ​fact ​checking ​even ​harder.

In ​an ​increasingly ​data-saturated ​world, ​individuals ​without ​the ​necessary ​skills ​to interpret ​the ​visualisation ​of ​that ​data ​with ​a ​critical ​eye ​are ​at ​a ​disadvantage. ​Indeed, while ​there ​is ​no ​shortage ​of ​disinformation ​and ​“FAKE ​NEWS!” ​around, ​there ​is ​also estimated ​to ​be ​a ​deficit ​of ​500,000 ​data ​scientists and ​statisticians ​in ​the ​EU, ​meaning plenty ​of ​opportunities ​for ​anyone ​with ​a ​head ​start ​in ​data ​literacy.

The ​ability ​to ​collect, ​manage, ​evaluate, ​and ​apply ​data, ​in ​a ​critical ​manner, ​can ​begin in ​the ​classroom ​by ​showing ​young ​people ​exactly ​how ​statistics ​and ​numbers ​can ​be doctored ​by ​anyone ​with ​a ​particular ​agenda ​in ​mind. ​The ​following ​selection ​of skewed ​or ​outright ​false ​data ​visualisations ​are ​all ​examples ​of ​how, ​to ​paraphrase Gregg ​Easterbrook, ​if ​you ​torture ​numbers, ​they’ll ​confess ​to ​anything. ​Below ​these ​you will ​find ​some ​links ​to ​resources ​for ​teaching ​and ​further ​reading.

A) Interrogating ​numbers

  1. Below ​is ​a ​graph ​showing ​a ​rise ​in ​abortions ​and ​decrease ​in ​cancer ​screenings ​at the ​US ​planned ​parenthood ​federation. ​It ​was ​used ​in ​a ​presentation ​by ​a ​politician as ​evidence ​to ​show ​why ​Planned ​Parenthood ​should ​be ​de-funded. ​However, ​a close ​look ​at ​the ​graph ​shows ​the ​scale ​is ​skewed. ​The ​correct ​graph ​is ​below.
  2. Ask ​students ​if ​they ​can ​see ​anything ​wrong ​with ​the ​graph. ​If ​no ​one ​can ​see anything ​then ​probe; ​where ​is ​the ​scale? ​What ​do ​the ​numbers ​say ​and ​how high/low ​are ​they ​represented ​on ​the ​scale?
  3. Ask ​students ​to ​perform ​a reverse ​image ​search ​on ​the ​graph ​to ​find ​out ​who ​made it ​and ​what ​their ​motivation ​was? ​Ask ​them ​to ​see ​if ​they ​can ​find ​the ​real ​graph ​in their ​results.

HINT: ​The 5 ​key ​questions ​and ​concepts ​can ​be ​a ​useful ​tool ​here.

B) ​Correlation ​≠ ​Causation

  1. Ask ​students ​what ​they ​think ​the ​term ​“correlation ​does ​not ​equal ​causation” means?
  2. Show ​them ​the ​graph ​below ​and ​explain ​that ​often ​when ​an ​individual ​or organisation ​wants ​something ​to ​be ​true, ​they ​use ​correlation ​to ​prove ​their ​point. However, ​as ​we ​can ​see ​from ​the ​below ​graph, ​corresponding ​statistics ​do ​not necessarily ​relate ​to ​each ​other.
  3. Ask ​students ​if ​they ​can ​find ​other ​examples ​online ​of ​correlation ​and ​to ​decide whether ​these ​correlations ​are ​useful ​or ​just ​coincidence.

C) ​Search ​online

  1. Ask ​students ​to ​do ​a ​search ​online ​to ​look ​for ​more ​dodgy ​statistics.
  2. Use ​search ​terms ​like; ​dodgy ​stats/statistics, ​misrepresented ​data/study/report, data/statistical ​literacy, ​skewed ​graph, ​biased ​study ​etc…
  3. Once ​students ​have ​found ​their ​dodgy ​data ​they ​should ​write ​a ​report ​following ​the 5 ​key ​questions ​and ​concepts.
  4. To ​dig ​further, ​they ​should ​try ​to ​look ​for ​flaws ​or ​bias ​in ​how ​the ​data ​was ​gathered

 

For ​more ​resources ​check ​out ​EAVI’s Data ​Literacy ​Primer

Duration: ​1 ​and ​½ ​hours

Introduction: It ​has ​become ​remarkably ​simple ​to ​create ​a ​valid-looking ​website, ​which ​to ​the unassuming ​eye ​resembles ​an ​official, ​big-name ​news ​outlet. ​But ​as ​if ​verifying text content ​wasn’t ​hard ​enough, ​seductive ​visualisations; ​graphs, ​charts, ​and ​maps, ​made with ​free ​tools ​found ​anywhere ​on ​the ​internet, ​can ​make ​fact ​checking ​even ​harder.

In ​an ​increasingly ​data-saturated ​world, ​individuals ​without ​the ​necessary ​skills ​to interpret ​the ​visualisation ​of ​that ​data ​with ​a ​critical ​eye ​are ​at ​a ​disadvantage. ​Indeed, while ​there ​is ​no ​shortage ​of ​disinformation ​and ​“FAKE ​NEWS!” ​around, ​there ​is ​also estimated ​to ​be ​a ​deficit ​of ​500,000 ​data ​scientists and ​statisticians ​in ​the ​EU, ​meaning plenty ​of ​opportunities ​for ​anyone ​with ​a ​head ​start ​in ​data ​literacy.

The ​ability ​to ​collect, ​manage, ​evaluate, ​and ​apply ​data, ​in ​a ​critical ​manner, ​can ​begin in ​the ​classroom ​by ​showing ​young ​people ​exactly ​how ​statistics ​and ​numbers ​can ​be doctored ​by ​anyone ​with ​a ​particular ​agenda ​in ​mind. ​The ​following ​selection ​of skewed ​or ​outright ​false ​data ​visualisations ​are ​all ​examples ​of ​how, ​to ​paraphrase Gregg ​Easterbrook, ​if ​you ​torture ​numbers, ​they’ll ​confess ​to ​anything. ​Below ​these ​you will ​find ​some ​links ​to ​resources ​for ​teaching ​and ​further ​reading.

A) Interrogating ​numbers

  1. Below ​is ​a ​graph ​showing ​a ​rise ​in ​abortions ​and ​decrease ​in ​cancer ​screenings ​at the ​US ​planned ​parenthood ​federation. ​It ​was ​used ​in ​a ​presentation ​by ​a ​politician as ​evidence ​to ​show ​why ​Planned ​Parenthood ​should ​be ​de-funded. ​However, ​a close ​look ​at ​the ​graph ​shows ​the ​scale ​is ​skewed. ​The ​correct ​graph ​is ​below.
  2. Ask ​students ​if ​they ​can ​see ​anything ​wrong ​with ​the ​graph. ​If ​no ​one ​can ​see anything ​then ​probe; ​where ​is ​the ​scale? ​What ​do ​the ​numbers ​say ​and ​how high/low ​are ​they ​represented ​on ​the ​scale?
  3. Ask ​students ​to ​perform ​a reverse ​image ​search ​on ​the ​graph ​to ​find ​out ​who ​made it ​and ​what ​their ​motivation ​was? ​Ask ​them ​to ​see ​if ​they ​can ​find ​the ​real ​graph ​in their ​results.

HINT: ​The 5 ​key ​questions ​and ​concepts ​can ​be ​a ​useful ​tool ​here.

B) ​Correlation ​≠ ​Causation

  1. Ask ​students ​what ​they ​think ​the ​term ​“correlation ​does ​not ​equal ​causation” means?
  2. Show ​them ​the ​graph ​below ​and ​explain ​that ​often ​when ​an ​individual ​or organisation ​wants ​something ​to ​be ​true, ​they ​use ​correlation ​to ​prove ​their ​point. However, ​as ​we ​can ​see ​from ​the ​below ​graph, ​corresponding ​statistics ​do ​not necessarily ​relate ​to ​each ​other.
  3. Ask ​students ​if ​they ​can ​find ​other ​examples ​online ​of ​correlation ​and ​to ​decide whether ​these ​correlations ​are ​useful ​or ​just ​coincidence.

C) ​Search ​online

  1. Ask ​students ​to ​do ​a ​search ​online ​to ​look ​for ​more ​dodgy ​statistics.
  2. Use ​search ​terms ​like; ​dodgy ​stats/statistics, ​misrepresented ​data/study/report, data/statistical ​literacy, ​skewed ​graph, ​biased ​study ​etc…
  3. Once ​students ​have ​found ​their ​dodgy ​data ​they ​should ​write ​a ​report ​following ​the 5 ​key ​questions ​and ​concepts.
  4. To ​dig ​further, ​they ​should ​try ​to ​look ​for ​flaws ​or ​bias ​in ​how ​the ​data ​was ​gathered

 

For ​more ​resources ​check ​out ​EAVI’s Data ​Literacy ​Primer

Duration: ​1 ​and ​½ ​hours

Introduction: It ​has ​become ​remarkably ​simple ​to ​create ​a ​valid-looking ​website, ​which ​to ​the unassuming ​eye ​resembles ​an ​official, ​big-name ​news ​outlet. ​But ​as ​if ​verifying text content ​wasn’t ​hard ​enough, ​seductive ​visualisations; ​graphs, ​charts, ​and ​maps, ​made with ​free ​tools ​found ​anywhere ​on ​the ​internet, ​can ​make ​fact ​checking ​even ​harder.

In ​an ​increasingly ​data-saturated ​world, ​individuals ​without ​the ​necessary ​skills ​to interpret ​the ​visualisation ​of ​that ​data ​with ​a ​critical ​eye ​are ​at ​a ​disadvantage. ​Indeed, while ​there ​is ​no ​shortage ​of ​disinformation ​and ​“FAKE ​NEWS!” ​around, ​there ​is ​also estimated ​to ​be ​a ​deficit ​of ​500,000 ​data ​scientists and ​statisticians ​in ​the ​EU, ​meaning plenty ​of ​opportunities ​for ​anyone ​with ​a ​head ​start ​in ​data ​literacy.

The ​ability ​to ​collect, ​manage, ​evaluate, ​and ​apply ​data, ​in ​a ​critical ​manner, ​can ​begin in ​the ​classroom ​by ​showing ​young ​people ​exactly ​how ​statistics ​and ​numbers ​can ​be doctored ​by ​anyone ​with ​a ​particular ​agenda ​in ​mind. ​The ​following ​selection ​of skewed ​or ​outright ​false ​data ​visualisations ​are ​all ​examples ​of ​how, ​to ​paraphrase Gregg ​Easterbrook, ​if ​you ​torture ​numbers, ​they’ll ​confess ​to ​anything. ​Below ​these ​you will ​find ​some ​links ​to ​resources ​for ​teaching ​and ​further ​reading.

A) Interrogating ​numbers

  1. Below ​is ​a ​graph ​showing ​a ​rise ​in ​abortions ​and ​decrease ​in ​cancer ​screenings ​at the ​US ​planned ​parenthood ​federation. ​It ​was ​used ​in ​a ​presentation ​by ​a ​politician as ​evidence ​to ​show ​why ​Planned ​Parenthood ​should ​be ​de-funded. ​However, ​a close ​look ​at ​the ​graph ​shows ​the ​scale ​is ​skewed. ​The ​correct ​graph ​is ​below.
  2. Ask ​students ​if ​they ​can ​see ​anything ​wrong ​with ​the ​graph. ​If ​no ​one ​can ​see anything ​then ​probe; ​where ​is ​the ​scale? ​What ​do ​the ​numbers ​say ​and ​how high/low ​are ​they ​represented ​on ​the ​scale?
  3. Ask ​students ​to ​perform ​a reverse ​image ​search ​on ​the ​graph ​to ​find ​out ​who ​made it ​and ​what ​their ​motivation ​was? ​Ask ​them ​to ​see ​if ​they ​can ​find ​the ​real ​graph ​in their ​results.

HINT: ​The 5 ​key ​questions ​and ​concepts ​can ​be ​a ​useful ​tool ​here.

B) ​Correlation ​≠ ​Causation

  1. Ask ​students ​what ​they ​think ​the ​term ​“correlation ​does ​not ​equal ​causation” means?
  2. Show ​them ​the ​graph ​below ​and ​explain ​that ​often ​when ​an ​individual ​or organisation ​wants ​something ​to ​be ​true, ​they ​use ​correlation ​to ​prove ​their ​point. However, ​as ​we ​can ​see ​from ​the ​below ​graph, ​corresponding ​statistics ​do ​not necessarily ​relate ​to ​each ​other.
  3. Ask ​students ​if ​they ​can ​find ​other ​examples ​online ​of ​correlation ​and ​to ​decide whether ​these ​correlations ​are ​useful ​or ​just ​coincidence.

C) ​Search ​online

  1. Ask ​students ​to ​do ​a ​search ​online ​to ​look ​for ​more ​dodgy ​statistics.
  2. Use ​search ​terms ​like; ​dodgy ​stats/statistics, ​misrepresented ​data/study/report, data/statistical ​literacy, ​skewed ​graph, ​biased ​study ​etc…
  3. Once ​students ​have ​found ​their ​dodgy ​data ​they ​should ​write ​a ​report ​following ​the 5 ​key ​questions ​and ​concepts.
  4. To ​dig ​further, ​they ​should ​try ​to ​look ​for ​flaws ​or ​bias ​in ​how ​the ​data ​was ​gathered

 

For ​more ​resources ​check ​out ​EAVI’s Data ​Literacy ​Primer

Share This Post, Choose Your Platform!